

Automation of Software Testing Using AI/ML

Contents
1.	Introduction	3
2.	Business Cases	3
2.1	Automatic test case generation	3
2.2	Predict the root cause of a defect	4
2.3	Impact of test failure/new feature	4

1. [bookmark: _Toc111652117]Introduction
Software testing is the process of evaluating and verifying that a software product or application does what it is supposed to do. It is an essential and critical part of the software development lifecycle. The benefits of testing include preventing bugs, reducing development costs and improving performance.
A software test engineer is responsible for designing test scenarios for software usability, running these tests, and preparing reports on the effectiveness and defects to the production team. Although automation testing eases the burden of a test engineer considerably, one of the Software Testing Fundamental is “100% Automation is not possible“. This makes manual testing imperative.
Machine Learning is the field of study that gives computers the capability to learn without being explicitly programmed. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms.
Machine learning and artificial intelligence are transforming software testing in ways that could not have been dreamt of a decade ago. This includes simplifying test creation, reducing the need for test maintenance, and driving new ways to assess the results.
2. [bookmark: _Toc111652118]Business Cases
2.1 [bookmark: _Toc111652119]Automatic test case generation - One of the most important steps in a test life cycle is test case creation. Test case creation is a slow process, requires domain knowledge, and takes up a substantial amount of time, and hence costs a significant amount of the testing budget.
Automatic test case generation is the process of creating test cases without human intervention. This can be applied to both UI testing and functional testing.
Advantages of automatic test case generation
· Decreases risk of coverage gaps
· Reduces cost by saving time and human resources
· Robust application testing without human intervention
Implementation
A Natural Language Processing (NLP) model will be trained with existing requirements and test case summaries for various applications under Akshayacorp Foundation, further it will accept a requirement document as input and provide test cases as the output.

Sample requirement and linked test cases
	User Story
	Test Case Summary

	As a user, I should be able to login to the application by entering my username and password
	Verify user is able to login to the website

	
	Verify user is unable to login with invalid username

	
	Verify user is unable to login with invalid password

Another approach is by using Natural Language Processing (NLP) methods that take input from existing test case document that contains a list of test cases linked to a functionality and uses language analysis to extract the steps into a form that is programmatically understandable. The model will then auto generate test cases for new functionalities.
2.2 [bookmark: _Toc111652120][bookmark: _GoBack]Predict the root cause of a defect - Identifying the root cause can often be complex. In order to understand why an issue has occurred, we need to uncover the underlying cause. Oftentimes, what is needed to identify the underlying cause is to understand what changed.
Implementation
With the help of existing code change logs and defects provided as input to a ML model, the model will be able to predict the root cause of future defects.
2.3 [bookmark: _Toc111652121]Impact of test failure/new feature on existing system
Understanding the impact of a new feature or change is key to help reduce noise as you start to push features into a continuous testing cycle. This is where AI and ML can be applied to create and inspect links between items and the outcome of changes to one or more items.
Let’s imagine that a test has just failed, and a new bug has been created for a software engineer to resolve (all of which can easily be automated today). As the engineer sets out to resolve the bug, they end up changing multiple files that affect other parts of the solution. The engineer commits the code that resolves the initial bug but now a new issue is raised that was caused by this change.
Implementation
By analysing the resulting bugs that are created using AI and ML, we could provide engineers with a set of areas that they will be impacting by making this change. Or, we could identify high risk areas in our source code repository. This can greatly reduce the impact of any changes that are made and help us understand what the impact of such a change could be before the change is committed.
Here is an example of ML applied to code repository that identifies high-risk code based on the number of changes — bug fixes applied to the individual files over time.
[image: image-blog-alm-ai-testing-bug-fix.jpg]

Applying AI to create these links between the issues (bugs), tests, and code commits can greatly improve the ability of any engineer to see the potential risk of a change to the repository. This can also be used to identify and create new test cases to help mitigate the risk of future changes.

image1.png

